loading...
مهندس امین اسمعیلی
امین اسمعیلی بازدید : 14 یکشنبه 07 مهر 1392 نظرات (1)

ظرفیت خازن عبارت است از مقدار بار الکتریکی که باید روی یکی از صفحات خازن جمع شود تا پتانسیل آن نسبت به صفحه دیگر به اندازه یک ولت افزایش یابد به عبارت دیگر خارج قسمت بار الکتریکی Q ذخیره شده روی هر یک از صفحات خازن بر اختلاف پتانسیل U میاندو صفحه را ظرفیت خازن می نامیم که با حرف C نشان میدهند و واحد آن فاراد است و آن عبارتست از نسبت یک کولن ( 1028 × 28/6 الکترون ) بار ذخیره شده در هر یک از صفحات خازنی به اختلاف پتانسیل یک ولت ؛به عبارت دیگر فاراد ظرفیت خازنی است که اگر به منبع ولتاژ یک ولتی وصل شود در آن یک آمپر ثانیه ( کولن ) بار الکتریکی ذخیره گردد . فاراد برای یک خازن بسیار بزرگ است و معمولاً از واحد های کوچکتری مانند میلی فاراد ، میکرو فاراد و نانو فاراد استفاده می شود .

C = Q/ V

- عوامل موثر بر ظرفیت خازن :

الف ) مساحت صفحات .

ب ) فاصله بین صفحات .

ج ) دی الکتریک استفاده شده .

بر طبق موارد بالا فرمول اندازه گیری ظرفیت خازن بدین شکل خواهد بود :

C = ( K × A ×ε0 ) / d

که در آن : C – ظرفیت خازن بر حسب فاراد

و ....

A - سطح موثر هادی ها

K – ضریب دی الکتریک عایق

d - ضخامت عایق یا فاصله بین صفحات

- ضریب تناسب که وابسته به واحد ها می باشد که اگر A بر حسب متر مربع ، d بر حسب متر و C بر حسب فاراد باشد ، آنگاه : ε0 = 0.885 × 10 – 11

انرژی ذخیره شده در خازن ها ( W ) به صورت زیر است :

W =( Q × U ) / 2


ثابت زمانی خازن :

اگر خازنی را به اختلاف پتانسیلی وصل کنیم به سرعت شارژ می شود ، شارژ سریع خازن به خاطر آنست که مقاومتی در مسیر شارژ وجود ندارد . حال اگر مقاومتی را در مسیر قرار دهیم زمان شارژ بیشتر خواهد شد . مقدار دقیق زمان شارژ به مقدار مقاومت قرار گرفته در مسیر شارژ و ظرفیت خازن بستگی دارد . ثابت زمانی بر حسب ثانیه است و با ζ نمایش می دهند .

(R×C = ζ) ثابت زمانی خازن عبارتست از مدت زمانی که طول می کشد تا ولتاژ دو سر خازن به 2/63% ولتاژ ماکزیمم دو سر خود ( ولتاژ منبع ) برسد . شارژ یک خازن در حدود 5 ثابت زمانی طول می کشد و خالی شدن آن نیز در حدود 5 ثابت زمانی انجام می گیرد .


- خازن در جریان متناوب :

خازن جریانهای متناوب را از خود عبور می دهد و مقاومتی را که در این جریان از خود نشان می دهد با فرکانس جریان و ظرفیت خازن نسبت عکس دارد ، این مقاومت را با XC نشان می دهند . ( این مقاومت در مقابل عبور جریان خازنها مخالفت می کند ) .

XC = 1 / ( 2ΠFC)

- XC بر حسب اهم است ( کاپاسیتانس ) .

- C ظرفیت بر حسب فاراد .

_ IC = 2π × F × C × UC è IC = ω × C × V

خازن در جریان متناوب باعث میشود جریان به اندازه نود درجه از ولتاژ جلو بیفتد . توان مصرفی مفید خازن صفر است و آنچه که از شبکه می گیرد یک توان راکتیو است . جریان متناوب بعلت فرکانس سبب تغییر پلاریته دو سر خازن شده و جریان متناوب از خازن به راحتی عبور می کند ولی خازن در جریان مستقیم مانند یک عایق عمل می کند . ولتاژ خازن با ولتاژ منبع همیشه 180 درجه اختلاف فاز دارد ، جریان عبوری از خازن با فرکانس ولتاژ داده شده نسبت مستقیم دارد . خازن همیشه با تغییرات ولتاژ مخالفت می کند .


- اتصال خازن ها :

الف ) اتصال سری خازنها :

در اتصال سری خازنها ، فاصله موثر بین صفحات بیشتر شده و ظرفیت معادل مجموعه خازنی کاهش می یابد . در اتصال سری تنها دو صفحه ابتدایی و انتهایی از مجموعه خازنی که به مولد بسته شده اند از مولد بار الکتریکی دریافت می کند و صفحات دیگر از طریق القا دارای بار الکتریکی می شوند بنابر این میزان بار الکتریکی همه خازن ها یکی است ولی اختلاف پتانسیل دو سر مجموعه برابر حاصل جمع اختلاف پتانسیل های دو سر خازن هاست .

QT = Q1 = Q2 = ….= Qn

Ut = U1 + U2 + …+Un

خازنهای متوالی پهنه کاربرد کمی دارند و آن بخاطر مسائل خاص مربوط به هر کاربرد آن است که باید تحقیقات مهندسی پیچیده ای انجام شود . همچنین بعلت دشواری حفاظت خازنها در جریانهای عیبکرد سیستم و فرو تشدید ترانسفورماتورها و تشدید زیر سنکرون در طی راه اندازی موتور ، کاربرد زیادی در سیستم های قدرت ندارند . خازن متوالی یک راکتانس منفی ( خازنی ) است که با راکتانس مثبت ( القایی ) مدار متوالی میشود و همه یا بخشی از آنرا جبران می کند . بنابراین اثر اصلی خازن متوالی کاستن یا حذف افت ولتاژ ناشی از راکتانس القایی مدار است ، حتی میتوان در نظر داشت که خازن متوالی یک تنظیم گر ولتاژ است و برافزایی ولتاژی متناسب با اندازه و ضریب توان جریان تامین می کند ، بنابراین خازن متوالی افزایش ولتاژی بوجود می آورد که خود به خود و همزمان با رشد بار زیاد میشود ، همچنین خازن متوالی در ضریب توانهای کمتر که افت ولتاژ بیشتر است افزایش ولتاژی خالصی بیشتر از خازن موازی پدید می آورد ، ولی خازنهای متوالی ضریب توان سیستم را بسیار کمتر از خازن های موازی بهبود می بخشند و اثر کمتری در جریان سیستم دارند .


ب ) اتصال موازی خازن ها :

در اتصال موازی خازن ها سطح موثر صفحات زیاد تر شده و ظرفیت معادل افزایش می یابد ، در این حالت اختلاف پتانسیل آنها با هم برابر اما بار الکتریکی آنها مختلف است و بار الکتریکی کل برابر با مجموع بار هاست .

Qt = Q1 + Q2 + ….+ Qn

Ut = U1 = U2 = …= Un

C = C1 + C2 + …+ Cn

خازنهای موازی به موازات خط ها بسته میشوند . خازنهای موازی توان یا جریان نوع راکتیو را تامین می کنند تا مولفه نا همفاز جریان مورد نیاز یک بار القایی را جبران کند . از جهتی خازنهای موازی با کشیدن جریان پیش فاز که بخشی یا همه مولفه پس فاز جریان بار القایی را در نقطه نصب ، خنثی می کند مشخصه آن را اصلاح می کند . بنابراین خازن موازی همان اثر خازن سنکرون یعنی ژنراتور یا موتور سنکرون ( همزمان ) پر تحریک را دارد .

با بکار گیری خازن موازی می توان جریان بار را کم کرد و ضریب توان مدار را بهبود بخشید ولی خازنهای موازی اثری بر جریان یا ضریب توان مدار بعد از نقطه نصب خود را ندارند.وظیفه اصلی خازن ها چه بصورت متوالی و چه بصورت موازی عبارتست از تنظیم ولتاژ و گذر توان اکتیو در محل نصب آنها . خازنهای موازی این کار را با تغییر ضریب توان بار انجام می دهند و خازنهای متوالی راکتانس القایی را جبران می کنند ، به عبارت دیگر خازن متوالی یک راکتانس منفی ( خازنی ) است که با راکتانس مثبت ( القایی ) مدار متوالی میشود و همه یا بخشی از آن را جبران می کند ؛ بطور کلی خازن ها را میتوان در هر تراز ولتاژی بکار برد ، می توان خازن ها را به موازات یکدیگر اضافه کرد تا ظرفیت کیلو واری مطلوب بدست آید و می توان آنها را به توالی کنار هم گذاشت تا کیلو ولت ولتاژ مورد نظر بدست آید .



می دانیم که بار سیستمهای برق رسانی دارای دو مولفه توان اکتیو و وتوان راکتیو است ؛ توان اکتیو را باید در نیروگاهها تولید کرد در حالی که توان راکتیو را نیز می توان در نیروگاهها تولید کرد ، این واقعیت عیان است که خازنهای قدرت موازی ، اقتصادی ترین منبع تامین توان راکتیو لازم بارهای القایی آن دسته از خط های انتقال اند که در ضریب توان پس فاز کار می کنند .

هنگامی که فقط در نیروگاهها توان راکتیو تولید کنیم ، اندازه همه اجزای سیستم ( یعنی ترانسفورماتورها ، خطوط انتقال و توزیع و..) بایئ متناسباً افزایش یابد . خازنها می توانند با کاهش تقاضای توان راکتیو در پشت خود تا ژنراتور ، این شرایط را تعدیل کنند ؛ جریان خط از پشت سر خازن تا تجهیزات تولید کاهش می یابد در نتیجه ، اتلاف های خطوط توزیع ، ترانسفورماتورهای پست و خط های انتقال کاهش می یابد .


بطور کلی منافع اقتصادی حاصل از نصب خازن را می توان چنین خلاصه کرد :

- آزاد سازی ظرفیت تولید

- آزاد سازی ظرفیت انتقال

- آزاد سازی ظرفیت پست توزیع

- آزاد سازی ظرفیت در سیستم های توزیع

- کاهش اتلاف انرژی در مس

- کاهش افت ولتاژ

باید توجه داشت که محل مناسب خازنها و میزان کیلو وار انتخابی و نحوه اتصال خازنها به هم و به شبکه از موضوعاتی است که نیاز به بررسی و محاسبه بیشتر دارد تا حد اکثر استفاده از این سیستم انجام گیرد .



تصحیح ضریب توان :

در سیستم برق رسانی ، بخصوص در فصول پر مصرف ، بار راکتیو با ضریب توان حدود 80% تولید خواهد شد ؛ بنابراین طبق شکل صفحه بعد قسمت "الف" در بار ، جریان نسبت به ولتاژ پس فاز خواهد بود . کسینوس زاویه بین جریان و ولتاژ را ضریب توان مدار می گویند . اگر مولفه های جریان را در ولتاژ سر مصرف کننده ضرب کنیم ، رابطه حاصل را می توان روی مثلث توان ( قسمت "ب" شکل ) نشان داد . این شکل رابطه موجود بین کیلو وات و کیلو ولت آمپر و کیلو وار را نمایش می دهد . با افزودن خازن می توان مولفه توان راکتیو (Q) ، توان ظاهری بار (S) را کم یا کلاً حذف نمود .



خازنهای موازی نیز به چند طریق با بار بصورت موازی قرار می گیرد که در بیشتر پستهای فوق توزیع بصورت ستاره زمین نشده است که برای ترانس با توانهای بالاتر از دو ستاره که نوترالهای آن بهم وصل شده اند استفاده می گردد .در محل اتصال دو نوترال معمولا از ترانس جریان برای حفاظت از تعادل ظرفیت خازنها استفاده میشود تا عدم تعادل در ظرفیت موجب آسیب به خازنهای دیگر نگردد . علاوه بر آن برای جلوگیری از جریانات هجومی بروی خازنها نیز راکتور های کوچکی نصب می گردد که توسط جریان هوا خنک خواهد شد ، همچنین فیوزهای کات اوت نیز در مسیر خازنها قرار خواهد داشت .

مجموعه خازنها نیز به چند طریق وارد مدار خواهند شد که معمول آن در پستهای فوق توزیع با توجه به میزان توان راکتیو و ولتاژ ثانویه ورودی ترانس خواهد بود که امکان در مدار بودن یا خارج شدن را صادر می نماید

امین اسمعیلی بازدید : 1 یکشنبه 07 مهر 1392 نظرات (0)

مقدمه: یکی از اجزاء مهم شبکه های فشار قوی ، مقره ها می باشد که بر حسب ولتاژ مورد استفاده و شرایط محیطی از نظر آلودگی و رطوبت ، شکل خاصی به خود می گیرند. وظایف مقره ها در شبکه ها را می توان به صورت زیر بیان نمود :1. تحمل وزن هادی های خطوط انتقال و توزیع برای نگهداری سیم های هوایی روی پایه ها و دکل ها در بدترین شرایط (یعنی موقعی که ضخامت یخ و برف تشکیل شده روی سیم ها در حداکثر مقدار باشد) را داشته باشد و اصولاً باید بتوانند بیشترین نیروهای مکانیکی وارد شده بر ان ها را تحمل کنند.2. عایق بندی هادی ها و زمین و بین هادی ها با یکدیگر به عهده مقره است. یعنی مقره ها باید از استقامت الکتریکی کافی برخوردار باشند تا بتوانند بین فازهای شبکه و دکل ها که متصل به زمین هستند ایزولاسیون کافی برای تحمل ولتاژ فازها را داشته باشند. استقامت الکتریکی آن ها باید در حدی باشد کهدر بدترین شرایط (یعنی در حضور رطوبت ، باران ، آلودگی و بروز صاعقه با ولتاژ بالا) دچار شکست کامی الکتریکی نشوند.بنابراین مقره ها باید دارای خصوصیات زیر باشند :1. استقامت الکتریکی بالا.2. استقامت مکانیکی بالا.3. عاری از ناخالصی و حفره های داخلی.4. استقامت در برابر تغییرات درجه حرارت و عدم تغییر شکل در اثر تغییر دما (با توجه به ضریب انبساط حرارتی که بایستی کم باشد).5. ضریب اطمینان بالا.6. ضریب تلفات عایقی کم.7. در برابر نفوذ آب و آلودگی ها مقاوم باشد. جنس مقره ها جنس مقره ها معمولاً از چینی یا شیشه است. مقره های چینی از سه ماده مختلف تشکیل شده است :1. کائولین یا خاک چینی AL2O3-2SIO2-2H2O به مقدار 40 تا 50 درصد.2. سیلیکات آلومینیوم (فلداسپات) K2O-AL2O3-6SIO2 به مقدار 25 تا 30 درصد.3. خاک کوارتز SIO2 به مقدار حداکثر 25 درصد.این سه نوع با ترتیب برای بالا بردن استقامت حرارتی ، الکتریکی و مکانیکی به کار می روند. به عبارت دیگر خواص الکتریکی ، مکانیکی و حرارتی چینی بستگی به درصد فراوانی این سه جزء دارد. هر چه فلداسپات بیشتر باشد استقامت الکتریکی آن زیادتر می شود و هر چه مقدار کوارتز بیشتر شود ، استقامت مکانیکی آن بیشتر شده و با افزایش کائولین ، استقامت حرارتی آن بیشتر می شود.برای تهیه چینی ، مواد فوق را با کمی آب خالص مخلوط می کنند تا به صورت گل و خمیر در آید. سپس این گل را در قالب های معینی شکل داده و در کوره حرارت می دهند تا پخته شود و رطوبت آن نیز گرفته شود. البته قبل از قالب گیری ، درصد رطوبت گل را پایین می آورند و تحت خلاء ان را پرس می کنند ، پس از ریخته شدن آن را سرد می کنند. ولی سرد کردن آن به طور ناگهانی انجام نمی شود و با ملایم این کار صورت می گیرد. تا ترکی در آن ایجاد نشود. پس از این مرحله یک لایه لعاب شیشه ای بر روی آن می ریزند تا سطح آن کاملاً خالی از وجود حباب ها و ترک های مویین گردد. لعاب شیشه ای علاوه بر افزایش استقامت مکانیکی مقره قدرت چسبندگی گرد و غبار و نفوذ گرد و غبار و رطوبت را کاهش می دهد. همچنین باعث ایجاد یک سطح کاملاً صاف می شود که باعث افزایش مقاومت سطحی عایق می شود.درجه حرارت پختن در کوره نیز در تعیین استقامت الکتریکی و مکانیکی مقره چینی مؤثر است که هر چه در درجه حرارت بالاتری قرار داده شود ، حبابهای هوا در آن کمتر به وجود می آیند و استقامت الکتریکی آن زیاد می شود اما در عوض عایق خیلی ترد و شکننده می شود و هرچه درجه حرارت پختن در کوره کمتر شود استقامت مکانیکی آن بیشتر می شود و هر چه درجه حرارت پختن در کوره کمتر می شود ، استقامت مکانیکی آن بیشتر می شود ، ولی حفره های بیشتری در آن باقی می ماند و استقامت الکتریکی آن بیشتر می شود ولی حفره های بیشتری در آن باقی می ماند و استقامت الکتریکی آن کاهش می یابد. معمولاً درجه حرارت پخت در کوره را بین 1200 تا 1500 درجه نگه م دارند. در نتیجه ، استقامت الکتریکی چینیبین 120 (kv/cm) تا 280 (kv/cm) می باشد. همچنین استقامت مکانیکی چینی در برابر نیروی فشاری 690 (MNt/m2) (در مقاطع بزرگتر 275 (MNt/m2) ) و در برابر نیروی کششی 48 (MNt/m2) (در مقاطع بزرگتر 20 (MNt/m2)) و در برابر نیروی خمشی 95 (MNt/m2) می باشد. از خواص بسیار مهم چینی می توان آسان شکل گرفتن آن ها و استقامت در برابر مواد شیمیایی و تغییرات جوی را نام برد.شیشهمعمولاً شیشه را در درجه حرارت هی بالا با مخلوطی از مواد مختلف از جمله آهک و پودر کوارتز ذوب می نمایند و سپس به طور ناگهانی آن را سرد نموده و قالب ریزی می کنند. این عمل ((Toughening) باعث سفت شدن شیشه می شود). بدین ترتیب مقره شیشه ای با استقامت مکانیکی خیلی زیاد بدست می آید که در مقابل لب پریدگی از چینی مقاوم تر است و استقامت مکانیکیفشاری آن 5/1 برابر چینی است و استقامت مکانیکی آن در برابر نیروهای خمشی اندک ، کمتر از چینی است.همچنین استقامت الکتریکی آن هم خیلی بیشتر از عایق های چینی است (بین 500 تا 1000 کیلو ولت بر سانتی متر).مزیت دیگر شیشه این است که ضریب انبساط حرارتی آن کوچک است و در نتیجه تغییر شکل نسبی آن در اثر تغییر درجه حرارت ، خیلی کم است. همچنین در مقره های شیشه ای ، قبل از بروز ترک ، کاملاً خرد می شوند و لذا از روی زمین به راحتی می توان مقره معیوب را تشخیص داد. بر خلاف مقره های چینی ، در واقع ساخت مقره های شیشه ای ، معمولاً حفره در آن به وجود نمی آید و اگر ترک یا حفره ای هم باشد به راحتی قابل مشاهده است. به علاوه به علت عبور نور خورشید از آن در اثر شاف بودن ، مقاومت آن در برابر نور خورشید بیشتر است . اما معایب شیشه آن است که :1. اولاً رطوبت به راحتی در سطح آن تقطیر می شود.2. به علت تغییر شکل نسبی داخلی پس از سرد شدن ، نمی توان مقره های بزرگی از آن ها ساخت.3. گرد و خاک را بیشتر به خود جذب می کند. شکست الکتریکی در مقره ها دو نوع شکست در مقره ها ممکن است رخ دهد :1. سوراخ شدن مقره ( شکست الکتریکی داخل بدنه مقره) :این شکست بستگی به جنس مقره ، ضخامت بدنه مقره و ناخالصی های آن دارد که غالباً اتفاق نمی افتد ؛ مگر در هنگام صاعقه های بسیار خطرناک و امواج سیار روی خط چین رخ می دهد. ضخامت بدنه مقره را طوری طراحی می کنند که برای ولتاژهای ضربه صاعقه ای و امواج سیار ناشی از سویچینگ سوراخ نشود.2. جرقه سطحی مقره :به علت اینکه سح مقره ها با هوا در ارتباط است و با توجه به اینکه استقامت الکتریکی هوا خیلی کمتر از مقره ها است لذا قبل از سوراخ شدن ، در روی سطح مقره ها جرقه زده می شود. معمولاً اگر بر روی سطح مقره ها گرد و غبار و رطوبت و آلودگی بنشیند به سطح آن رسانا می شود و یک جریان نشتی روی سطح مقره بین هادی و پایه فلزی آن بر قرار می گردد و باعث پایین آمدن ارزش عایقی سطح مقره می شود. لذا اولاً سطح عایق ها را طویل می سازندتا مسیر جریان نشتی طولانی تر شود و ارزش عایقی سطحی زیاد از دست نرود. دیگر آن که سسطح عایق را به صورت چتری می سازند تا باران از آن ریخته شده و ابعاد مقره نیز بزرگ نشود و بالاخره جای خشک هم داشته باشد. شیب چترها باید طوری باشد که روی سطوح هم پتانسیل یعنی عمود بر خطوط میدان بین هادی و میله قرار گیرند. زیرا اگر بین دو نقطه ای که دارای اختلاف پتانسیل باشند ، سطح رسانای ناشی از گرد و غبار تشکیل می شود ، جریان زیادتری جاری شده و جرقه سطحی زودتر زده می شود. انواع مقره ها بر حسب کاربرد این نوع وسیله ، مقره ها را به سه دسته تقسیم می کنند :1. مقره های خطوط هوایی : برای عایق کردن هادی ها نسبت به پایه (دکل) و نسبت به یکدیگر و نگهداری هادی ها بر روی پایه ها از این نوع مقره استفاده می شود.2. مقره های اتکایی : برای عایق کاری باس بارها در پست ها و تابلوها نسبت به زمین و نگهداری آن ها از این نوع مقره ها استفاده می شود.3. مقره های عبوری یا بوشینگ ها : از این نوع مقره ها برای عبور باس بارها از دیواره ها یا ورود به تجهیزات استفاده می شود. همچنین برای ایزوله کردن خطوط یا باس بارها نسبت دیوارها یا بدنه تجهیزات هم به کار می رود.اکنون به توضیح تک تک این نوع مقره ها خواهیم پرداخت . البته درصد بسیار زیادی از مقره های مورد استفاده از نوع مقره های خطوط هوایی می باشد.انواع مقره های خطوط هواییالف) مقره های سوزنی (میخی) :از این مقره ها برای نگهداری خطوط توزیع 11 و 20 و 33 کیلو ولت استفاده می شود که بیشتر به صورت یکپارچه ساخته می شوند و معمولاً به شکل ناقوس کلیسا هستند و هادی خط روی شیار بالایی مقره قرار می گیرد و توسط یک سیستم به مقره محکم می شود. مقره توسط یک پیچ فولادی که در داخل مقره محکم شده است به بازوی دکل بسته می شود. اطراف پیچ فولادی را با فلز نرم مانند سرب یا سیمان پر می کنند تا چینی مقره با فولاد سخت در تماس نباشد و در اثر گشتاور خمشی شکسته نشود.چترهای روی مقره هم به خاطر ایجاد مسیر طولانی و همچنین ایجاد نقاط خشک در هنگام بارندگی و هم لغزان بودن سطح مقره برای باقی نماندن باران بر روی سطح مقره ایجاد می شود. به عبارت دیگر در حالت مرطوب بودن مقره ، فاصله جرقه برابر مجموع کوتاهترین فاصله از لبه یک چتر به نزدیکترین نقطه روی چتر پایینی به اضافه فاصله از لبه چتر پایینی تا پایه فلزی مقره می باشد. همچنین در حالت خشک بودن مقره کوتاهترین فاصله از هادی تا پایه فلزی مقره است. به این منظور ، ضریب اطمینان مقره را به صورت زیر تعریف می کنند.ولتاژ لازم برای جرقه سطحی = ضریب اطمینان مقرهولتاژ نامی مقرهدر شبکه های 20 کیلو ولت ، ضریب اطمینان هوای خشک مقره های میخی برابر 6 و برای هوای مرطوب به مقدار 4 است. همچنین در شبکه های 11 KV این ضریب در هوای خشک برابر 2/8 و برای هوای مرطوب به مقدار 5 است.ب) مقره های آویزان (در مقره های خطوط هوایی) : در ولتاژهای بالاتر از 50 کیلو ولت که در سیستم های انتقال و فوق توزیع استفاده می شود ، استفاده از مقره های سوزنی به علت نیاز به ضخامت زیادتر و پیچیده تر شدن ساختمان مقره ها و گرانتر شدن و غیر اقتصادی بودن آن ها امکان پذیر نیست. لذا در ولتاژهای بالا از مقره های آویزان می شود و هادی خط به وسیله کلمپ فلزی به پایین ترین مقره بشقابی زنجیره متصل می گردد.هر مقره بشقابی از یک دیک بشقاب از جنس چینی یا شیشه تشکیل شده است که در قسمت بالایی آن ،یک کلاهک چدنی گالوانیزه توسط سیمان مخصوصی به نام Alumina (که مقاومت الکتریکی بالا و از استقامت مکانیکی و چسبندگی بالایی برخوردار است) به شیشه یا چینی متصل شده است و در قیمت پایین مقره نیز یک پین (pin) فولادی گالوانیزه که آن هم به وسیله سیمان مخصوص Alumina به مقره متصل شده است. همچنین مسیر زیر بشقاب ها به صورت چین دار است تا طول مسیر جریان نشتی افزایش یابد. پین فولادی هر مقره در داخل حفره کلاهک مقره پایینی قرار گرفته و با زدن گیره اطمینان ( اشپیل Split-Pin ).حفره : کلاهک از سوراخ ریز مقابل آن اتصال پین و کلاهک محکم می شود. دو مقره ضمن اتصال محکم به مقره در محل اتصال به صورت لولایی حرکت آزادانه هم دارند. قطر بشقاب های این نوع مقره ها معمولاً بین 150 تا 360 میلیمتر و یا بیشتر می باشد . استقامت مکانیکی آن ها هم معمولاً بین 40 تا 300 کیلو نیوتن می باشد.مزایای استفاده از مقره های بشقابی را می توان به صورت زیر بیان نمود :1. چون هر واحد مقره بشقابی برای یک ولتاژ نامی پایینی (در حدود 11 کیلو ولت) طراحی می شود. متناسب با ولتاژ خط می توان به تعداد دلخواه از این بشقاب ها را به هم متصل نمود تا یک زنجیره آن بتواند ولتاژ خط را تحمل کند (قابلیت انتخاب تعداد بشقاب ها).2. اگر هر کدام از بشقاب های یک زنجیره مقره آویزان ، معیوب یا صدمه ببیند فقط لازم است همان یک بشقاب عوض شود و نیازی به تعویض کل زنجیره نیست (اقتصادی بودن مقره).3. چون زنجیره مقره به کراس آرم خط آویزان است و می تواند به صورت آزادانه حرکت نماید ، حداقل فشار مکانیکی بر مقره های آویزان وارد می شود (تنش های مکانیکی کمتری به مقره وارد می شود).4. اگر به دلیلی بخواهند ولتاژ نامی خط را افزایش دهند به راحتی می توان با اضافه نمودن چند تا بشقاب ، قدرت عایقی مناسب را به دست آورد و نیازی به تعویض زنجیره مقره نیست (قابلیت انعطاف در افزایش ولتاژ خط).5. چونهادی خط به زنجیره آویزان می گردد و پایین تر از بازوی کراس آرم (صلیبی) دکل خط انتقال قرار می گیرد در نتیجه هنگام برخورد صاعقه به خط ، صاعقه ابتدا به بازوی کراس آرم خط برخورد می نماید تا حدود زیادی از خط حفاظت می شود (حفاظت خط در برابر صاعقه به وسیله بازوی کراس آرم دکل انجام می شود).6. اگر بار مکانیکی خط زیاد باشد مثلاً : در اسپن های بلند ، هنگام عبور خطوط انتقال از روی رودخانه ها ، دره ها ، اتوبان ها می توان از زنجیره های دوبل یا بیشتر استفاده نمود (قابلیت استفاده از زنجیره های دوبل یا بیشتر). پ) مقره های سنتی :مقره های کششی در جاهایی که نیروی کشش افقی زیادی به مقره وارد می شود استفاده می گردد. از این مقره ها در پایه های ابتدا و انتهایی خطوط انتقال ، توزیع و در پایه هایی که در مسیر خط از حالت مستقیم خارج شده و یا نسبت به افق ، زاویه پیدا می کنند ، استفاده می شوند. مقره های مذکور همان مقره های بشقابی هستند که به صورت افقی نسب می شوند و باید بیوری کششی خط را در پایه ها تحمل نمایند و چون نیروی زیادتری را باید تحمل کنند فقط استقامت مکانیکی آن ها نسبت به مقره های آویزان بیشتر است. د) مقره های مهار : در خطوط توزیع برای پایه هایی که در ابتدا و انتهای خط قرار می گیرند و یا برای پایه هایی قرار گرفته در زاویه برای خنثی کردن نیروی کششی که از یک طرف به پایه وارد می شود از سیم مهار استفاده می شود. این سیم مهار از یک طرف به رأس تیر محکم می شود و از طرف دیگر به وسیله مهار و صفحه مهار در داخل زمین محکم می شود.برای ایمنی و حفاظت بیشتر که احتمالاً سیم مهار در بالا از طریق میلگرد تیر برق دار گردید ، سیم مهار در نزدیکی زمین برقدار نشود ، در وسط سیم مهار از مقره مهار استفاده می شود و سیم های مهار از دو طرف به مقره مهار متصل می شود. این مقره به گونه ای است که اگر شکسته شود ، سیم مهار رها نمی شود و البته بایستی تحمل نیروی کششی سیم مهار را داشته باشند. ﻫ )مقره های استوانه ای :این مقره ها به صورت یک زنجیره استوانه ای و به صورت یکپارچه از جنس چینی یا اخیراً از مواد ترکیبی (که استقامت مکانیکی بسیار بالایی داشته و آب بر روی سطح آن ها پخش نمی شود و برای مناطق صحرایی مناسب هستند) ساخته می شوند و به دو طرف انتهایی آن ها دو کلاهک فلزی با سیمان مخصوص اتصال داده شده است. قطر استوانه عایق متناسب با قطر مکانیکی نیاز انتخاب می شود. از این مقره بعضاً در خطوط انتقال استفاده می شود. این مقره ها در مقایسه مقره های آویزان بشقابی از وزن بسیار کمتری برخوردارند (وزن مقره های اویزان دریک زنجیره بیشتر به خاطر وزن کلاهک های فلزی آن است) و لذا از نظر اقتصادی ارزان تر هستند. ولی نقطه ضعف اصلی آن ها امکان خراب شدن کامل مقره در اثر یک قوس الکتریکی یا ضربه مکانیکی بیرونی بر آن است. در صورتی که در مقره های بشقابی تمام زنجیره از بین نمی رود. در زنجیره های بشقابی اگر یک مقره دچار ترک شود تا مدت زیادی بقیه آن ها می توانند ولتاژ خط را تحمل کنند و همچنین بار مکانیکی خط را تحمل نمایند.در ولتاژهای بالا می توان دو یا سه مقره استوانه ای را به هم متصل نمود. نوع ساخته شده از مواد ترکیبی (Composite Material) این نوع مقره ها دارای خاصیت آب گریزی بوده و آب و آلودگی بر روی سطح مقره پخش نمی شود ، بلکه این آلودگی و رطوبت در یک نقطه روی سطح باقی می ماند و چون تمام سطح مرطوب نمی شود ، می توان مسیر خزشی آن را کوتاه نمود. جریان نشتی این نوع مقره ها خیلی کم است و در مناطق با آلودگی زیاد روی سطح آن ها جرقه زده نمی شود و نیازی به تمیز کردن هم ندارند. این مقره ها ضمن داشتن استقامت مکانیکی بالا از وزن بسیار کمی نیز برخوردارند.مقره های مخصوصبرای مناطق با شرایط آب و هوایی بسیار بد مانند مناطقی که آلودگی صنعتی یا آلودگی آب و هوایی بیش از حد معمول وجود دارد یا مناطقی که مه زیاد وجود دارد یا مناطقی که صاعقه های خطرناک با شیب زیاد وجود دارد ، از مقره های استاندارد معمولی نمی توان استفاده نمود و باید از مقره های با طراحی خاص برای آن مناطق استفاده نمود و باید از مقره های با طراحی خاص برای ان مناطق استفاده نمود. در این نوع مقره ها معمولاً از بشقاب های گودتر استفاده می کنند و داخل بشقاب گود ، چترهای بلندتری به آن داده می شود. در نتیجه فاصله خزش مقره افزایش می یابد و جریان نشتی آن به دلیل طولانی تر شدن مسیر و بزرگ شدن مقاومت سطحی کاهش یافته و دیرتر جرقه سطحی زده می شود (به خاطر آلودگی و رطوبت). همچنین سطح مقره را پر شیب می سازند تا در اثر باران سطح آن به راحتی تمیزتر شود. ز) مقره چرخی :از این مقره ها در خطوط فشار ضعیف 400 ولت استفاده می شود. این مقره ها توسط تسمه فلزی U شکل به نام اتریه و پین واشپیل به پایه های خطوط توزیع هوایی بسته می شوند و سیم هوایی شبکه بر روی شیار چرخی مانند مقره قرار می گیرد و از آن به عنوان مقره کششی نیز استفاده می شود و در دو نوع یک شیاری و دو شیاری استفاده می شود.مقره های اتکاییاین مقره ها برای نگهداشتن شین های فشار قوی و دیگر تجهیزات به کار برده می شوند. این مقره ها به شکل استوانه ای چینی توپر یا توخالی ساخته می شوند که برای تأسیساتی که مقره باید نیروی مکانیکی بیشتری را تحمل کند از نوع توخالی آن استفاده می شود. زیرا نوع توپر آن فقط با یک قطر معین و محدودی قابل ساخت است ولی برای افزایش استقامت الکتریکی نوع توخالی آن سوراخ داخل مقره ها به صورت افقی یا عمودی نصب می شوند.مقره های عبوری (بوشینگ ها)برای سرهای خروجی و ورودی دستگاه های فشار قوی ، برای جلوگیری از ایجاد جرقه بین ولتاژ آن خط عبوری و بدنه دستگاه به کار می روند (مثل بوشینگ ترانس ها). این مقره ها به صورت لایه های استوانه ای به کار می روند و نسبت به محیط مورد استفاده ، شکل مقره های عبوری متفاوت است. ساده ترین آن ها استوانه های درهم است. فضای داخل این استوانه های مابقی ، معمولاً توسطگازها یا مایع های عایق پر می شود. در ترانسفورماتورها ، بوشینگ ها حاوی روغن هستند. ارتفاع آن ها برحسب میزان ولتاژ و ارتفاع از زمین متفاوت است. به منظور جلوگیری از ازدیاد حرارت در بوشینگ ها از فیبرهای عایقی در سر بوشینگ ها استفاده می شود زیرا فیبر هدایت حرارتی بهتری نسبت به چنین دارد. آزمایش مقره های خطوط هواییبه طور کلی سه دسته آزمایش بر روی مقره ها انجام می گیرد :1. Type Test : که فقط روی سه عدد مقره انجام می گیرد و صرفاً به خاطر بررسی مشخصات الکتریکی یک مقره است که اساساً بستگی به شکل مقره و جنس و ابعاد آن به طور کلی به طراحی مقره بستگی دارد. این آزمایش ها را فقط یک بار برای تأیید صحت طراحی مقره ها و مقایسه نتایج حاصل با مقادیر تعیین شده توسط استانداردها انجام می دهند. به این آزمایش ها ، آزمایش های تخلیه یا آزمایش های جرقه نیز می گویند (Flashover Test).2. Sample Test (آزمایش های نمونه) : این آزمایش ها بر روی تعدادی از مقره ها که به صورت کاملاً اتفاقی انتخاب می شوند ، انجام می گیرد و به منظور بررسی مشخصات مقره و کیفیت موارد مورد استفاده در آن ها است و در حقیقت معیاری برای پذیرش کیفیت مقره های تولیدی یک تولید کننده است.3. Routine Test (آزمایش های سری) : این آزمایش ها بر روی تک تک تمام مقره های تولید شده در خط تولید شده در خط انجام می گیرد و به منظور خارج شدن مقره هایی که احتمالاً در جریان ساختن آن اشکالی به وجود آمده می باشد. بدین طریق مقره های کاملاً معیوب از خط تولید خارج می شوند. Type Test بر طبق استاندارد بین المللی IECگروه اول آزمایش ها شامل آزمایش های زیر است :1. آزمایش استقامت در برابر ولتاژ ضربه ای ، صاعقه در هوای خشک : این آزمایش در دو حالت انجام می شود :الف) با موج ضربه ای مقاوم : برای هر مقره ای حداکثر دامنه موج ضربه ای استاندارد (که برای امواج صاعقه مدل می شود) باعث ایجاد جرقه بر روی سطح مقره نمی شود را استاندارد مشخص کرده است. البته مقادیر برای شرایط جوی استاندارد داده می شود. حالا اگر شرایط آزمایش از نظر فشار و درجه حرارت و میزان رطوبت متفاوت با شرایط استاندارد باشد ، باید مقادیر فوق را تصحیح نمود. در این آزمایش 15 بار موج ضربه ای استاندارد 1.2/50 μsec به مقره به دفعات متوالی اعمال می شود. فاصله زمانی بین هر بار باید به اندازه کافی باشد تا اثر قبلی از بین رود. دامنه موج ضربه ای همان مقدار مشخص شده در استانداردها با ضریب تصحیح مربوطه است. اگر این آزمایش در هیچ دفعه ای جرقه سطحی روی مقره زده نشود یا تعداد دفعات جرقه سطحی کمتر از 2 بار باشد و سطح مقره ها آسیب کلی نبیند. این آزمایش جواب مثبت داده است. البته اثر جزئی جرقه روی سطح مقره (مثل خش انداختن) مجاز است.ب) با موج ضربه ای با احتمال 50 % جرقه سطحی : دامنه موج ضربه ای استاندارد که با احتمال 50% بر روی سطح مقره جرقه زده می شود در استانداردها مشخص شده است. حالا برای یک مقره مورد آزمایش ، یک موج ضربه ای استاندارد با دامنه Vk نزدیک به سطح تقریبی دامنه ولتاژ جرقه 50% انتخاب می شود. همچنین یک دامنه متغیر ولتاژ ΔV که تقریباً 3% از ولتاژ V است ، انتخاب می گردد. حالا یک موج ضربه ای استاندارد با دامنه VK به مقره اعمال می شود. اگر این موج سبب بروز جرقه سطحی روی مقره نگردید ، دامنه موج ضربه ای بعدی باید Vk + ΔV انتخاب شود که اگر حدود 30 بار و چون ممکن است Vk اولیه خیلی کوچک یا خیلی بزرگ انتخاب شده باشد ، 1 تا 9 آزمایش اول را 30 بار محسوب نمی کنند. اگر هر ولتاژ UV در این آزمایش nV بار تکرار شده باشد ، ولتاژ جرقه سطحی 50% از رابطه زیر بدست می آید : ∑nVUVمقره به شرطی این قسمت را جواب می دهد که 50%U بدست آمده از رابطه بالا برای آن از 04/1 برابر ولتاژ جرقه مقاوم آن کمتر نباشد و مقره ها در اثر جرقه ای سطحی روی آن ها آسیب کلی نبیند.2. آزمایش استقامت در برابر ولتاژ ضربه ای سوئچینگ در هوای مرطوب :موج ضربه ای برای مدل کردن سوئچینگ ، یک موج ضربه ای 250/2500μsec است که با موج ضربه ای صاعقه متفاوت است و زمان رسیدن به یک مقدار یک و نیم موج پشت آن خیلی بیشتر از موج ضربه ای صاعقه می باشد. در این حالت مقره تحت آزمایش ، زیر بارش یک باران مصنوعی قرار می گیرد. شدت بارش باران باید حداقل بین 1 میلیمتر بر دقیقه تا 2 میلیمتر بر دقیقه باشد و به صورت مورب با زاویه °45 بارش نماید. درجه حرارت محیط هم بین c°15- تا c°15 باشد و مقاومت مخصوص آن در c°20 باید – m Ω 15±100 باشد.مقره باید به مدت 15 دقیقه قبل از شروع تست تحت بارش این باران قرار گیرد ، البته این زمان می تواند کمتر هم باشد ، مخصوصاً زمانی که تست های متوالی انجام می گیرد. در این جا نیز این آزمایش در دو حالت مختلف می تواند انجام بگیرد :الف) با موج ضربه ای با احتمال 50% جرقه سطحی : طریقه آزمایش مانند حالت هوای خشک است (با موج ضربه ای صاعقه) ولی دامنه موج ضربه ای 50% بدست آمده از رابطه نباید کمتر از 085/1 برابر دامنه موج ضربه ای مقاوم تعیین شده در استاندارد برای موج ضربه ای مقاوم تعیین شده در استاندارد مربوط به شرایط جوی استاندارد است که برای شرایط آزمایشگاهی باید در ضرایب تصحیحی ، اصلاح شود.ب) با موج ضربه ای مقاوم : این آزمایش نیز با دامنه موج ضربه ای مقاوم تعیین شده در استاندارد برای 15 بار تکرار می شود و اگر تعداد دفعاتی که جرقه سطحی روی مقره زده می شود بیشتر از 2 بار نباشد این ازمایش جواب مثبت داده است. در این آزمایش نیز نباید سطح مقره ها آسیب کلی ببیند (اثرهای جزئی روی سطح مقره قابل پذیش است).3. آزمایش استقامت در برابر ولتاژ با فرکانس صنعتی در هوای مرطوبWet Power – Freuency Testدراین لحظه مقره نیز تحت آزمایش در یک شرایط باران مصنوعیمانند حالت قبل قرار می گیرد. متناسب با شرایط جوی زمان آزمایش از نظر فشار و درجه حرارت ، مقدار ولتاژ قابل استفاده مقره را بر اساس مقدار تعیین شده آن در استانداردها بدست می آوریم (با استفاده از ضرایب تصحیح). سپس یک ولتاژ در حدود 75% ولتاژ فوق را به مقره اعمال می کنیم و سپس به تدریج و به آرامی با یک شیب در حدود 2% ولتاژ فوق بر ثانیه ، ولتاژ را افزایش می دهیم تا به مقدار 100% فوق برسد. سپس این ولتاژ را در حدو یک دقیقه بر روی مقره نگه می داریم. طی این آزمایش هیچ گونه جرقه سطحی یا سوراخ شدن مقره نباید اتفاق بیفتد. دراین آزمایش می توان افزایش ولتاژ را هنوز ادامه دهیم تا جرقه سطحی حاصل شود. این آزمایش را 5 بار تکرار می کنیم و مقدار متوسط ولتاژهای جرقه سطحی را به عنوان ولتاژ جرقه هوای مرطوب در ولتاژ سینوسی با فرکانس های صنعتی تعیین کنیم. فرکانس موج سینوسی باید بین 15kv تا 100kv باشد.هر واحد مقره ، نام تولید کننده و سال تولید آن نوشته می شود. همچنین حداکثر قدرت مکانیکی مقره نیز بر روی آن نوشته می شود. مثلاً U300 مقره 300 کیلونیوتنی است. شرایط استاندارد به صورت T = 20°c وP = 760mmHy رطوبت 119 water/m3 = است. قبل از پرداختن به آزمایش هایی که بر روی مقره های نمونه انجام می گیرد ، ساختمان مقره ها را بیان می کنیم ، که به دو دسته تقسیم می شوند :1. نوع A : مقره هایی که طول یا ضخامت کوتاهترین مسیر موجود در داخل آن ها برای سوراخ شدن داخل بدنه مقره حداقل برابر با نصف طول کوتاهترین مسیر جرقه در هوای روی سطح مقره است.2. نوع B : مقره هایی که ضخامت داخل آن ها برای مسیر سوراخ شدن مقره کمتر از نصف طول کوتاهترین مسیر جرقه بر روی سطح مقره در هوا است.آزمایش های روی مقره های نمونه طبق استاندارد (Sample Test IEC ) برای یک محموله ای از مقره های یک نوع با مشخصات یکسان از همه نظر که به وسیله خریدار از تولید کننده مقره خریداری می شود. تعدادی مقره به صورت کاملاً اتفاقی و تصادفی از بین محموله آماده انتخاب می شود و تعدادی آزمایش روی نمونه های انتخابی انجام می شود. در صورتی که نتایج آزمایش ها مثبت باشند ، کیفیت محصول آن ها از طرف خریدار تأیید می شود. تعداد نمونه های انتخابی بر اساس استاندارد IEC به صورت زیر است:با فرضP تعداد مقره های انتخابی به عنوان نمونه و N تعداد کل مقره ها باشد ، آنگاه :1) اگر N 2) اگر 500 3) اگر N > 20000 باشد ، P = 14 + ( 0/75N ÷ 1000) است. آزمایش هایی که بر روی مقره های نمونه انتخاب شده انجام می گیرند ، عبارتند از :1- بررسی سیستم قفل و بست.2- کنترل مقدار وزن مقره ها و ابعاد قسمت های مختلف آن ها.3- آزمایش سیکل حرارتی.4- آزمایش حداکثر تحمل بار الکترومکانیکی (فقط روی مقره های شیشه ای).5- آزمایش حداکثر تحمل بار مکانیکی.6- آزمایش شوک حرارتی (فقط برای مقره های شیشه ای).7- آزمایش تحمل ولتاژ در برابر سوراخ شدن (فقط برای مقره های نوع B).8- آزمایش تخلخل (وجود حفره) (فقط برای مقره های چینی).9- آزمایش میزان گالوانیزه بودن قسمت های فلزی مقره. مقره های نمونه انتخاب شده را طبق استاندارد IEC به دو گروه تقسیم می کنند :گره اول شامل دو سوم تعداد مقره های انتخاب شده و گروه دوم شامل یک سوم تعداد مقره های انتخاب شده است. بر اساس نوع A یا B مقره ها و نوع بشقابی یا اتکایی ، آزمایش های نمونه فوق تعدادی بر روی گروه اول و تعدادی بر روی هر دو گروه انجام می شود. مقره هایی که بر روی آن ها آزمایش های نمونه صورت می گیرد نباید در سرویس از آن ها استفاده شود. شرح آزمایش1- بررسی سیستم قفل و بست : در این جا چند آزمایش مختلف برای اطمینان از مکانیزم قفل و بست انجام می گیرد :الف) با اتصال بشقاب ها به همدیگر و تشکیل یک یا چند زنجیره ، خرکت های افقی شبیه به حرکت هایی که در حالت سرویس ممکن است پیدا شود به آن ها داده می شود که اتصال زنجیره ها باید باز شود.ب) اشپیل (Split – Pin) تمام بشقاب ها در موقعیت قفل قرار داده می شود و به وسیله یک دستگاه که نیروی کششی وارد می کنند بار کششی برای حرکت کردن اشپیل هر بشقاب اعمال می شود. برای هر بشقاب این عمل 3 بار تکرار می شود. مقدار این نیرو طبق استاندارد ، بین 50 تا 500 نیوتن بایستی اعمال شود.ج) هشپیل هر مقره یا نیروی کششی حداکثر یعنی 500N کشیده می شود (به وسیله دستگاه کشنده). اشپیل ها در اثر این نیرو نباید از محل قفل به طور کامل خارج شوند.2- کنترل ابعاد مقره (Verification Of Dimensions) :این کنترل ابعاد عبارتند از :الف) اندازه گیری وزن مقره های نمونه و متوسط گیری به عنوان وزن مقره.ب) اندازه گیری قطر خارجی مقره از بالاترین تا پایین ترین نقطه.ج) اندازه گیری ارتفاع مقره از بالاترین تا پایین ترین نقطه.د) اندازه گیری فاصله خزشی مقره ( Creep Age Distance ).ﻫ) کنترل قطر حفره کلاهک و قطر پین فلزی مقره با اشل های استاندارد (اشل هایی که باید داخل حفره بروند یا از قطر پین بگذرند و اشل هایی که نباید بگذرند).3- آزمایش سیکل حرارتی ( Temperature Cycle Test )در این آزمایش یک مخزن آب سرد و یک مخزن آب گرم تهیه می شود. درجه حرارت مخزن آب گرم باید 70°c بیشتر از درجه حرارت مخزن آب سرد باشد و به وسیله یک سیستم اتوماتیک ، درجه حرارت مخزن ها ثابت نگه داشته شوند. مقره های نمونه به مدت T دقیقه در مخزن آب گرم قرار داده می شوند.Aمقره نوع T = 15 + 0/7 m , m = kgجرم مقره بر حسبBمقره نوع T = 15 minبعد از طی زمان فوق ، سریعاً بدون هیچ تأخیری (حداکثر تأخیر 30 ثانیه) و برای مدت زمان T دقیقه نیز در مخزن آب سرد غوطه ور می شوند. این سیکل گرما و سرما 3 بار تکرار می شود. برای مقره های اتکایی به جاب مخزن آب سرد ، باید آن را بعد از خارج کردن از مخزن آب گرم (برای مدت 15 دقیقه در مخزن آب گرم قرار گرفته است) به مدت 15 دقیقه در معرض باران مصنوعی با شدت 3 میلیمتر بر دقیقه قرار می دهیم و این سیکل را 3 بار تکرار می کنیم.شرط پذیرش این آزمایش این است که در پایان هیچ یک از مقره های نمونه ترک خوردگی پیدا نکرده باشند.4- آزمایش تحمل بار الکترومکانیکی ( Electromechanical Failing Load Test)در این آزمایش همزمان با اعمال ولتاژ با فرکانس صنعتی به مقره یک بار مکانیکی کششی نیز به مقره اعمال می شود تا اگر تخلیه الکتریکی داخلی در اثر تخلیه های داخل مقره اتفاق می افتد ، در اثر نیروی کششی اعمال شده به صورت عیب مکانیکی (مثلاً ترک خوردن مقره) مشخص می شود. ولتاژ اعمالی به مقره همان ولتاژ مقاوم با فرکانس صنعتی در هوای مرطوب است. چون در مقره های شیشه ای تخلیه های موضعی داخل مقره کاملاً پیدا است ، لذا این آزمایش برای مقره های شیشه ای انجام نمی شود.5- آزمایش تحمل حداکثر بار مکانیکی ( Mechanical Failing Load Test )در این آزمایش مقره نمونه ، تک تک و به نوبت در داخل دستگاه مخصوص اعمال نیروی کششی قرارگرفته و نیروی کششی اعمالی به آن ها از صفر به طور سریع به مقدار 75% حداکثر تحمل بار مکانیکی نامی مقره افزایش داده می شود. سپس به آرامی در یک مدت زمان معین بین 15 تا 45 ثانیه بار کششی اعمالی را به 100% حداکثر بار مکانیکی می رسانیم. شدت این افزایش به مقدار 35% حداکثر بار مکانیکی نامی در هر دقیقه می باشد. در این آزمایش مقره باید بتواند بار مکانیکی کششی اعمال شده را تحمل کند و دچار شکست مکانیکی لازم برای شکست مقره دست یابیم. لازم به ذکر است که برای مقره های اتکایی (سوزنی) بار مکانیکی خمشی به جای کشش اعمال می شود.6- آزمایش شوک حرارتی (فقط برای مقره های شیشه ای)در این آزمایش یک مخزن آب که درجه حرارت کمتر از c°50 را دارد ، مهیا می شود. سپس مقره های نمونه را در داخل یک کوره هوای گرم که درجه حرارت آن حداقل °c100 بالاتر از درجه حرارت مخزن آب است ، 20 دقیقه قرار می دهند. سپس مقره ها را به طور ناگهانی وارد مخزن آب می نمایند و حداقل 2 دقیقه در مخزن با آب نگه می دارند. مقره ها نباید دچار ترک یا شکستگی شوند.7- آزمایش تحمل ولتاژ در برابر سوراخ شدن مقره ( Pun Chore Tesr )این آزمایش می تواند با یک موج ولتاژ سینوسی با فرکانس صنعتی و یا با یک موج ضربه ای انجام گیرد. البته معمولاً با فرکانس صنعتی انجام می شود. مقره های نمونه در این آزمایش کاملاً خشک و تمیز می شوند و در داخل یک محفظه روغن شناور می شوند. که روغن باید عاری از رطوبت و ناخالصی باشد و استقامت الکتریکی بالایی داشته باشد. اگر محفظه روغن فلزی باشد باید ابعاد آن خیلی بزرگ باشد که جرقه بین قسمت فلزی مقره و بدنه محفظه روغن زده نشود. ولتاژ با فرکانس صنعتی بین قسمت های فلزی مقره اعمال می شود. همچنین روغن برای این استفاده می شود که استقامت الکتریکی خیلی بالاتری نسبت به هوا دارد و از بروز جرقه سطحی روی مقره در اثر اعمال ولتاژ بالا جلوگیری می کند. برای آزمایش ، ولتاژ اعمالی را سریعاً به مقدار حداکثر ولتاژ نامی قابل تحمل مقره می رسانیم که در استانداردها مشخص شده است که بر اثر این ولتاژ نباید در مقره شکست الکتریکی و سوراخ شدن به وجود آید. اگر میزان استقامت مقره مورد نظر باشد بایستی ولتاژ را آنقدر افزایش داد تا مقره سوراخ شود.8- آزمایش تخلخل (فقط برای مقره های چینی) Poorsity Testدر این آزمایش قطعات شکسته شده یک مقره چینی در یک محلول الکل یک درصد که مقداری جوهر قرمز نیز به آن اضافه شده (یک گرم جوهر قرمز درصد گرم الکل) و تحت فشار 15 مگانیوتن بر متر مربع برای چندین ساعت (حدود 24 ساعت) قرار داده می شود. سپس قطعات بیرون آورده شده و تمیز و خشک می شوند و دوباره شکسته شده و به قطعات کوچکتری تبدیل می شوند. در سطوح شکسته شده نباید هیچ اثری از نفوذ الکل مشاهده شود.این آزمایش برای لعاب (glaze) مقره است (برای اطمینان از عدم وجود ترک های مویین در لعاب مقره) لذا می توان مقره را پس از آزمایش وزن کرد و سپس برای 24 ساعت در آب تحت فشار قرار داده و سپس مجدداً وزن نمود. اگر افزایش وزن داشته باشیم نشان دهنده نفوذ آب در خلل و فرج مقره است.9- آزمایش میزان گالوانیزاسیون قسمت های فلزی (Galvanizing Test)در این آزمایش اولاً وضعیت ظاهری پوشش سطحی روی قسمت های فلزی مقره های نمونه از نظر یکنواختی و هموار بودن بررسی می گردد. همچنین به وسیله یک دستگاه مخصوص جرم فلز (روی) بر روی سطوح فلزی در واحد تعیین می گردد. دستگاه مخصوص فوق ، ضخامت فلز روی را می تواند در یک نقطه هم اندازه گیری کند. برای این منظور 10 نقطه به طور تصادفی بر روی کلاهک و 10 نقطه بر روی پین انتخاب می شوند. سپس با داشتن جرم حجمی روی ، مقدار جرم فلز روی در واحد سطح مشخص می شود. در هر مقره نمونه ، جرم روی در واحد سطح نباید کمتر از 500 گرم بر متر مربع باشد و برای تمام نمونه ها به طور متوسط از مقدار 600 گرم برکتر مربع نباید کمتر باشد. تست های معمول مقره ها (Routine Test)این آزمایش ها به تک تک مقره ها در خط تولید اعمال می شود که شامل آزمایش های زیر هستند :1- بررسی وضعیت ضاهری مقره ها از نظر شکل و ابعاد و رنگ ظاهری آن ها.2- آزمایش های مکانیکی :برای مقره های نوع A: یک زنجیره از مقره ها به مدت یک دقیقه تحت یک بار کششی معادل 60% حداکثر تحمل بار مکانیکی قرار می گیرند.برای مقره های نوع B: یک زنجیره از مقره ها برای مدت 10 ثانیه تحت یک بار کششی معادل 40% حداکثر تحمل بار مکانیکی قرار می گیرند.مقره هایی که در این آزمایش دچار شکست و ترک خوردگی شوند از خط تولید خارج می شوند.3- آزمایش الکتریکی :مقره های بشقابی یا مقره های اتکایی (سوزنی) در این آزمایش به آنها یک ولتاژ سینوسی با فرکانس صنعتی اعمال می شود. دامنه ولتاژ باید به حدی باشد که هر چند ثانیه یک بار جرقه سطحی روی مقره زده می شود. زمان اعمال ولتاژ باید حداقل 5 دقیقه باشد. اگر مقره ها دچار سوراخ شدگی شوند از خط تولید خارج می شوند.

امین اسمعیلی بازدید : 12 یکشنبه 07 مهر 1392 نظرات (0)

سیستم های قدرت وظیفه تأمین انرژی الکتریکی مورد نیاز برای مصرف کننده های الکتریکی را به عهده دارند. این سیستم ها، همانند بقیه سیستم های مهندسی باید به گونه ای طراحی شوند که ضمن اقتصادی بودن از قابلیت اطمینان بالایی برخوردار باشند. بالا بودن قابلیت اطم ینان یک سیستم، بدین معنا نیست که در آن هیچ گونه ایرادی به وجود نخواهد آمد بلکه همواره احتمال وقوع حالت های ناخواسته و غیر عادی که موجب اختلال در عملکرد سیستم می شوند، وجود دارد. در سیستم های قدرت نیز حالت های بسیاری وجود دارد که می تواند باعث قطع تغذیه مصرف کننده ها، آسیب رسیدن به اجزاء سیستم، آسیب رسیدن به افراد و... شود.

به طور کلی هر حالت غیر عادی که در عملکرد سیستم به وجود می آید، خطا نامیده می شود. از این حالت های غیر عادی می توان به وقوع اتصال کوتاه، افزایش و یا کاهش بیش از حد ولتاژ، افزایش و یا کاهش بیش از حد فرکانس،افزایش حرارت تجهیزات در اثر توان عبوری بیش از حد از آن ها یا اضافه بار،از سنکرون خارج شدن ژنراتورها و ... اشاره کرد.

اتصال کوتاه ها از مهمترین و پراحتما ل ترین خطاهایی هستند که در یک شبکه به وجود می آید. این خطاها ممکن است بر اثر برخورد یک یا دو فاز با زمین، اتصال دو یا سه فاز به یکدیگر و ... به وجود آیند که در این حالت جریان زیادی در حدود 10 تا 100 برابر جریان عادی، از شبکه عبور می کند.

عبور این جریان می تواند اثرات مختلف و زیانباری روی شبکه داشته باشد که از مهم ترین آن ها می توان به اثرات حرارتی روی تجهیزات اشاره کرد که باعث سوختن و آسیب دیدن عایق آن ها می شود. این امر ممکن است در زمانی در حدود چند ثانیه صورت گیرد. از این رو رفع خطا در یک سیستم باید در کوتاهترین زمان ممکن صورت گیرد. برای تشخیص حالت های غیرعادی در یک شبکه و ایزوله کردن بخش معیوب از سایر بخش ها از سیستم حفاظت استفاده می شود. در اغلب موارد خطاهای به وجود آمده در سیستم قدرت، باعث تغییرات ناخواسته و شدید در اندازه ولتاژ یا جریان می شوند. از این رو تقریبا در تمامی خطاها با اندازه گیری میزان جریان و ولتاژ، می توان وقوع خطا را تشخیص داد .

در سیستم های حفاظت و در مرحله اول با استفاده از ترانس های ولتاژ و جریان، اندازه ولتاژ و جریان کاهش پیدا کرده تا به میزان قابل استفاده برای تجهیزات سیستم حفاظت برسد.از انواع رله ها میتوان به موارد زیر اشاره کرد:

۱. رله اضافه جریان

۲. رله های ولتاژی

۳. رله خطای زمین

۴. رله دیفرانسیل

۵. رله زمین محدود شده

۶. رله های فرکانسی

۷. رله بر گشت توان

۸. رله حفاظت در برابر بار نامتقارن

رله حفاظتی در برابر زمان استارت طولانی

رله بوخهلتز

در این قسمت 3 مورد از رله ها را بررسی می کنیم:

رله اضافه جریان:

حفاظت یک شبکه الکتریکی در برابر جریانهای زیاد یکی از اولیه ترین حفاظت ها در شبکه است. باید توجه داشت که حفاظت در برابر اضافه جریان با حفاظت در برابر اضافه بار متفاوت است. در اضافه جریان ها که ناشی از وقوع اتصال کوتاه بین یک یا دو فاز با زمین، اتصال بین دو فاز و ... هستند، جریان به مراتب بیشتری نسبت به حالت های اضافه بار از شبکه می گذرد که این جریان باید در کوتا هترین زمان ممکن تشخیص داده شده و قطع شود.

برای حفاظت در برابر اضافه جریا ن از رله Over current که دراستاندارد ANSI با کد شماره 50 یا 51 مشخص شدهُ استفاده می شود. این متن برگرفته از سایت مهندسی برق قدرت و شبکه های انتقال و توزیع مهندس هادی حداد خوزانی می باشدکد شماره 50، برای زمان عملکرد لحظه ای و کد 51 برای عملکرد با تأخیر زمانی است. در حالت عملکرد لحظه ای پس از این که جریان از، میزان تنظیم شده برای رله بیشتر شد، رله آن را تشخیص داده و بلافاصله تریپ می دهد . در عملکرد باتأخیر زمانی، پس از رسیدن جریان به میزان تنظیم شده، رله پس از مدت زمانی که به میزان جریان بستگی دارد، دستور تریپ را صادر می کند. در این حالت معمولا از منحنی های معکوس با شکل و شیب متفاوت استفاده میشود.

رله های ولتاژی:

معمولا تجهیزات مورد استفاده در یک شبکه الکتریکی برای کار در یک ولتاژ مشخصی طراحی شده اند. ازاین رو نباید ولتاژ اعمالی به آن ها از حد مشخصی کمتر و یا بیشتر شود. محدوده این تغییرات به نوع دستگاه بستگی دارد. برای حفاظت شبکه های الکتریکی در برابر تغییرات ولتاژ، از دو نوع رله به نام رله Under Voltage و رله Over Voltage استفاده میشود.

رله Under Voltage برای حفاظت تجهیزاتی که در اثر افت ولتاژ آسیب می بینند مانند الکتروموتورها به کار برده می شود. این رله معمولا دارای یک تنظیم ولتاژی و یک تنظیم زمانی است و در صورت افت ولتاژ شبکه تا حد تنظیم شده و پس ازطی زمان تنظیم شده عمل می کند. تنظیمات این رله به نوع وسیله مورد حفاظت بستگی دارد. به عنوان مثال در مورد موتورهای الکتریکی، تنظیم ولتاژی این رله در حدود 70 تا 80 درصد ولتاژ نامی و تنظیم زمانی آن در حدود چند ثانیه است.

رله : Over voltage :

برای حفاظت شبکه در برابر اضافه ولتاژ مورد استفاده قرار می گیرد و معمولا دارای دو تنظیم زمانی و ولتاژی است . در صورت افزایش بیش از حد ولتاژ شبکه و رسیدن به حد تنظیم شده، در زمان تنظیم شده عمل می کنند. تنظیم ولتاژی این رله در حدود 120 درصد ولتاژ نامی و تنظیم زمانی آن در حدود چند ثانیه است . این رله معمولا در خروجی ژنراتورها و روی با س بار اصلی شبکه نصب میشود.

امین اسمعیلی بازدید : 1 یکشنبه 07 مهر 1392 نظرات (0)

برقگیر از وسایل ایمنی می‏باشد که برای هدایت موجهای ولتاژ ضربه‏ای به زمین و جلوگیری از ورود آنها به ایستگاههای انتقال و توزیع نیرو بکار می‏رود و معمولاً در انتهای خط انتقال و در ورودی ترانسها نصب می‏شود. ولتاژ شکست الکتریکی یک برقگیر بایستی کمتر از ولتاژ شکست الکتریکی ایزولاسیون لایه تجهیزات نصب شده در پست باشد.

انواع برقـگیـر

1) برقگیر میـله‏ای
2) برقگیر بـا فاصله هوایی
3) برقگیر بـا مقاومت غیر خطی
4) برقگیر بدون فاصله هوایی
5) برقگیر خـازنـی
6) برقگیر فیوزی

برقگیـر میـله ای

یکی از ساده‏ترین و ارزانترین برقگیرها که از اولین برقگیرها می‏باشند برقگیر میله‏ای هستند که با وجود قدیمی بودن امروزه نیز کاربردهای زیادی دارد . این برقگیر عبارت است از دو میله نوک‏تیز که یکی در قسمت برقدار نصب شده و دیگری در زیر ایزولاتور و یا بدنه نصب و به زمین اتصال می‏یابد فاصله دو نوک متناسب با ولتاژ و شرایط و زمان اعمال ولتاژ روی سیستم قابل تنظیم است . تنظیم این فاصله طوری که در مقابل ولتاژ حداکثر سیستم پایدار بوده و فقط در برابر ولتاژهای زیاد تخلیه الکتریکی صورت می‏گیرد . البته تنظیم برقگیر از حالت ایده‏آل دور بوده و می‏توان گفت در یک باند ولتاژ عمل می‏کند و مشخصه عملکرد دقیقی را برای آن نمی‏توان تصور کرد.

برقگیـر با فاصلة هوایی

نوع دیگری از برقگیرها که کاربرد بسیاری در پستهای فشار قوی دارد ؛ برقگیر از نوع شاخکی می باشد . این نوع برقگیرها ساده ترین نوع برقگیر می باشند که به جرقه گیر (برقگیر با فاصله هوایی ) معروف هستند به مراتب از آنها در محلهای اتصال مقره به هادی یا اطراف بوشینگهای ترانسهای توزیع دیده می شود.
همانطوریکه که می دانیم برقگیرها باید در برابر ولتاژ نامی شبکه مانند یک کلید باز رفتار کنند و در برابر ولتاژهای بیشتر از ولتاژ نامی شبکه مانند یک کلید بسته رفتار کنند.
در این نوع برقگیرها (برقگیر با فاصله هوایی) اگر ولتاژ بالا رود؛ بین شاخکها قوس برقرار شده و انرژی صائقه را به زمین منتقل شده و این امر باعث می شود که تجهیز از بین نرود.

موارد استفاده برقگیـر با فاصلة هوایی

امروزه از این نوع برقگیرها فقط در موارد خاصی استفاده می شود که عبارتنداز:
1) برسر بوشینگهای ترانسها (جهت حفاظت سیم پیچهای ترانس)
2) در خطوط انتقال فشار قوی که به شکل حلقه ای هستند که هم نقش برقگیر را بازی می کنند و هم نقش حلقة کرونا را بازی می کنند.

برقگیـر با مقاومت غیر خطی

این نوع برقگیر از یک یا چند خازن سری همراه با یک یا چند مقاومت غیر خطی تشکیل شده است، این خازنها که اصولا ً بصورت فواصل هوایی می‏باشد در حالت کار عادی سیستم از عبور جریان الکتریکی به داخل برقگیر جلوگیری می‏کنند. چنانچه ولتاژ سیستم به عللی بالا رود، فواصل هوایی بین خازنها هادی شده و جریان الکتریکی عبور می‏کند عبور جریان از مقاومت غیر خطی میزان افت و ولتاژ دو سر برقگیر را مشخص می‏کند .
فواصل هوایی موجود در برقگیر باید طوری باشد که در مقابل حداکثر ولتاژ کار سیستم مقاوم بوده ولی اگر به عللی اضافه ولتاژ اعمال شده اتصال کوتاه شود پس از برقراری شرایط عادی بتواند جریان را قطع کند که این کار توسط مقاومت های غیر خطی انجام می‏گیرد . مجموعه قسمت خازن‏ها و مقاومت غیر خطی در داخل یک ایزولاتور ساخته شده از مواد عایقی قرار می‏گیرند . انتخاب چند خازن در برقگیر بجای یک خازن به این دلیل صورت می‏گیرد که استقامت برقگیر در مقابل ولتاژهای برگشتی زیاد گردد برای اینکه تقسیم ولتاژهای روی خازن‏ها بطور مساوی انجام گیرد. یک سری خازن و مقاومت موازی در دو سر فاصله‏های هوایی قرار می‏دهند و این کار را درجه‏بندی ولتاژ می‏گوئیم، یعنی یکنواخت نمودن توزیع ولتاژ در روی خازنهای متوالی .

همانطور که در شکل دیده می شود برقگیرها در قسمت فوقانی خود مجهز به یک وسیله حلقه ای شکل هستند که این وسیله به حلقه کرونا یا کروناگیر معروف می باشد .
همانطور که می دانیم پدیدة کرونا تخلیه الکتریکی ناقص در یک میدان غیر یکنواخت می باشد . در پستهای فشار قوی این پدیده بالاخص در محل های اتصال هادیها به تجهیزات دیده می شود .
لذا برای برطرف کردن این عیب باید میدان را در این نواحی یکنواخت کنند تا اثرات مخرب کرونا کمتر گردد . برقگیرهایی که امروز در پستها بکار می روند از نوع ZNO می باشند که در داخل آنها قرص هایی از جنس اکسید رویZNO می باشد که بسته به سطح ولتاژ شبکه تعداد آنها متغیر است .

برقگیـر با مقاومت غیر خطی

همانطور که می دانیم این برقگیرها باید همانند یک مقاومت غیر خطی عمل کنند یعنی در برابر ولتاژ نامی شبکه امپدانس بالایی را از خود نشان دهند و در برابر ولتاژهای بالاتر از ولتاژ نامی شبکه امپدانس کمی را از خود نشان دهند تا تخلیه صورت گیرد . لذا قرص های اکسید روی بکار رفته در برقگیرهای امروزی در واقع نقش مقاومت غیر خطی را بازی می کنند که دارای جریان نشتی بسیار کمی می باشند (در حالتNormal شبکه) لذا به روی این قرص ها ولتاژ تقسیم می گردد.
حال اگر میدان غیر یکنواخت باشد قاعدتاً تقسیم ولتاژ بر روی قرص ها یکسان نخواهد بود؛ در این صورت یک قرص و به خصوص قرص های بالایی ولتاژ بالاتری را از سایر قرص ها متحمل می شوند و زودتر آسیب می بینند و این امر سبب عملکرد نادرست برقگیر می شود لذا اگر بتوانند به طریقی میدان را یکنواخت کنند ( به حالت یکنواخت نزدیک کنند ) تقسیم ولتاژ بین قرصها شکل متعادل تری را به خود می گیرد و قاعدتاً عمر قرصها افزایش می یابد و عملکرد برقگیرها بهتر میگردد.
برای این کار از وسیله ای به نام کروناگیر یا حلقه کرونا استفاده می کنند؛ که در حقیقت هم میدان را به سمت یکنواختی سوق می دهد و هم تقسیم ولتاژ را به روی قرص ها به حالت متعادلی نزدیک می نماید.

برقگیـر بدون فاصلة هوایی

یک نوع برقگیر بدون فاصله هوایی امروزه بکار می‏رود که خازنهای سری آن از قطعات اکسید روی می‏باشد که این قطعات بصورت قرصهایی با اندازه‏های مختلف ساخته شده و روی هم قرار می‏گیرند. این برقگیرها از نظر ساخت ساده‏تر بوده و دارای حجم کمتری نیز می‏باشد. این برقگیرها می‏توانند در ولتاژهای پائین‏تر عمل کنند بنابراین سطح ولتاژ حفاظت تجهیزات را نیز می‏توان پائین‏تر آورد و در نتیجه در هزینه‏ها صرفه‏جویی نمود و جریان نشتی در این نوع برقگیرها کمتر است یا تقریباً صفر است.

برقگیـر خـازنی

این نوع برقگیر برای ولتاژهای فشار ضعیف استفاده می‏شود که انرژی اعمال شده حاصل از موج ولتاژ در خازن ذخیره می‏شود.

برقگیـر فیـوزی

این نوع برقگیر نیز طوری ساخته می‏شود که در مقابل اضافه‏ ولتاژ که سبب عبور جریان زیادی از برقگیر بشود می‏سوزد و جرقه داخل آن توسط گاز یا مواد نسوز درون آن خاموش می‏شود و اکثراً بعنوان حفاظت ثانویه بکار می‏رود.

محل نصب برقگیـر

برقگیر باید در ورودی پستهای ترانس قبل از کلیه تجهیزات و تا حد ممکن نزدیک به آنها نصب گردد. علاوه بر برقگیری که در ورودی پستهای ترانس نصب می‏شود قبل از تجهیزات مهم مانند ترانسفورماتورهای قدرت نیز جداگانه برقگیر نصب می‏شود. معمولاً در مسیر برقگیر به زمین یک شماره انداز قرار می‏دهند که می‏تواند تعداد دفعات تخلیه موجهای ولتاژ ضربه‏ای بر روی برقگیر را ثبت نماید.

امین اسمعیلی بازدید : 2 یکشنبه 07 مهر 1392 نظرات (0)

همه ما با اصطلاحاتی مانند برق دو فاز شده است و یا سیم نول قطع شده و یا تقارن فازها به هم خورده است آشنا هستیم و خطرات آن را نیز می دانیم در گذشته در مدارات حساس بصورت کنتاکتوری برخی عیوب مشخص می گردید و چراغ ها و زنگ های آلارم فعال می گردید و برق شبکه قطع ، ولی این مدار اولاً نمی توانست کلیه عیوب راتشخیص دهد از طرف دیگر قابل استفاده درکلیه اماکن وتابلوهای برق نبود .


با پیشرفت علم الکترونیک این عیوب مورد بررسی قرار گرفت و در نهایت دستگاههای به نام رله کنترل فاز ساخته شد که متناسب با شرکت سازنده مجهز به امکانات کمتر یا بیشتر می باشد ولی در کل یک رله کنترل فاز باید عیوب زیر را تشخیص دهد :



1- قطع شدن فازها ( یک فاز ، دو فاز و یا هر سه فاز ) یا سیم نول

2- تغییر توالی فازها

3- افزایش یا کاهش بیش از حد مجاز ولتاژ

4- عدم تقارن بیش از حد ولتاژ سه فاز

5- شوک های ناشی از قطع و وصل برق

رله های کنترل فاز دارای یک بوبین می باشند که در صورت صحت کلیه شرایط عمل نموده و تیغه باز خود را می بندد ، در نتیجه این تیغه باید در مسیر مدار فرمان قرار گیرد .

برای تشخیص رله از وضعیت برق شبکه باید هر سه فاز و سیم نول وارد رله کنترل فاز گردد ، در نتیجه به یک رله کنترل فاز حداقل 5 سیم متصل است .

در این قسمت به تشریح رله کنترل فاز شرکت میکرو می پردازیم :



این رله دارای 7 پیچ اتصال می باشد که به ترتیب عبارتند از :

1- l1و l2 و l3 که به ترتیب به سه فاز متوالی شبکه متصل می شوند

2- mp ترمینال سیم نول می باشد که باید به سیم نول متصل گردد .

3- ترمینال شماره 15 ، 16 و 18 که پیچ کنتاکتها در مدار فرمان می باشند

این رله دارای 5 LED می باشد - دو LED سبز و سه LED قرمزکه به ترتیب عبارتند از :

1- LED سبز با علامت U : در صورت اتصال سه فاز و سیم نول به رله این چراغ روشن می شود .

2- LED سبز با علامت R :در صورت عملکرد صحیح رله این چراغ روشن می شود .

3- LED قرمز با علامت P : در صورت قطع فاز یا فازها و قطع سیم نول یا جابجائی فازها و یا پائین بودن درجه حساسیت رله این چراغ خطر روشن می شود .

4- LED قرمز با علامت U< : در صورت خطای کاهش ولتاژ شبکه این چراغ به عنوان چراغ خطا روشن می شود .

5- LED قرمز با علامت U> : در صورت خطای افزایش ولتاژ شبکه این چراغ به عنوان چراغ خطا روشن می شود .

این رله دارای 3 رنج تنظیم می باشد که به ترتیب عبارتند از :

1- زمان تاخیر در وصل : که از 1 تا 30 ثانیه قابل تنظیم است و بر روی هر زمانی که تنظیم شود ، در صورت صحت کلیه موارد بعد از زمان انتظار ( زمان تنظیم شده ) رله عمل خواهد کرد و چراغ R روشن می شود .این متن برگرفته از سایت مهندسی برق قدرت و شبکه های انتقال و توزیع مهندس هادی حداد خوزانی می باشد



2- زمان تاخیر در قطع : زمان عکس العمل رله (قطع رله) در موارد بروز عیب بر اساس زمان تنظیم شده توسط این رنج تنظیم ، مشخص می شود . این زمان در این مدل رله از 1 تا 15 ثانیه تنظیم می شود .





3- حساسیت قطع فاز : با این درجه تنظیم می توان نامتقارنی و ولتاژ برگشت را جهت قطع خروجی انتخاب نمود . در این مدل رله ، حساسیت از 3 تا 30 قابل تنظیم می باشد .



در اکثریت موارد حساسیت بین 15 تا 20 درصد مناسب می باشد .

در موتورهائی که ولتاژ برگشت زیادی دارند می توان از حساسیت 5 % استفاده نمود و در صورتی که عدم تقارن ولتاژ موجود در شبکه مزاحم عمل عادی رله باشد می توان از حساسیت های 25% تا 30 % استفاده نمود .

نحوه عملکرد رله و تست رله :

در صورت اتصال صحیح فازها و سیم نول ابتدا چراغ سبز U روشن می شود و در صورت متقارن بودن ولتاژها ، صحیح بودن توالی فازها و تنظیم بودن حساسیت متناسب با موتور الکتریکی بعد از طی زمان تنظیمی On Delay چراغ سبز R روشن می شود که معرف عملکرد رلهمی باشد در همین زمان کنتاکت 15 رله از 16 قطع و به کنتاکت 18 وصل شده و اجازه عمل به کنتاکتور اصلی را می دهد .

در نتیجه بعد از عملکرد رله ترمینال های 15 و 18 کنتاکتهای بسته در مدار فرمان و ترمینال های 15 و 16 کنتاکتهای باز در مدار فرمان خواهند بود .

امین اسمعیلی بازدید : 1 یکشنبه 07 مهر 1392 نظرات (0)

‏ وسیله‌ای است که انرژی الکتریکی را به وسیلۀ دو یا چند سیم‌پیچ و از طریق القای الکتریکی از یک مدار به مداری دیگر منتقل می‌کند. به این صورت که جریان جاری در مدار اول (اولیۀ ترانسفورماتور) موجب به وجود آمدن یک میدان مغناطیسی در اطراف سیم‌پیچ اول می‌شود، این میدان مغناطیسی به نوبۀ خود موجب به وجود آمدن یک ولتاژ در مدار دوم می‌شود که با اضافه کردن یک بار به مدار دوم این ولتاژ می‌تواند به ایجاد یک جریان در ثانویه بینجامد.

ولتاژ القا شده در ثانویه VS و ولتاژ دو سر سیم‌پیچ اولیه VP دارای یک نسبت با یکدیگرند که به طور آرمانی برابر نسبت تعداد دور سیم پیچ ثانویه به سیم‌پیچ اولیه‌است:


به این ترتیب با اختصاص دادن امکان تنظیم تعداد سیم‌پیچ‌های ترانسفورماتور، می‌توان امکان تغییر ولتاژ در سیم‌پیچ ثانویۀ ترانس را فراهم کرد.

یکی از کاربردهای بسیار مهم ترانسفورماتورها کاهش جریان پیش از خطوط انتقال انرژی الکتریکی است. دلیل استفاده از ترانسفورماتور در ابتدای خطوط این است که همه هادی‌های الکتریکی دارای میزان مشخصی مقاومت الکتریکی هستند، این مقاومت می‌تواند موجب اتلاف انرژی در طول مسیر انتقال انرژی الکتریکی شود. میزان تلفات در یک هادی با مجذور جریان عبوری از هادی رابطۀ مستقیم دارد و بنابر این با کاهش جریان می‌توان تلفات را به شدت کاهش داد. با افزایش ولتاژ در خطوط انتقال به همان نسبت جریان خطوط کاهش می‌یابد و به این ترتیب هزینه‌های انتقال انرژی نیز کاهش می‌یابد، البته با نزدیک شدن خطوط انتقال به مراکز مصرف برای بالا بردن ایمنی ولتاژ خطوط در چند مرحله و باز به وسیله ترانسفورماتورها کاهش می‌یابد تا به میزان استاندارد مصرف برسد. به این ترتیب بدون استفاده از ترانسفورماتورها امکان استفاده از منابع دوردست انرژی فراهم نمی‌آمد.

ترانسفورماتورها یکی از پربازده‌ترین تجهیزات الکتریکی هستند به طوری که در برخی ترانسفورماتورهای بزرگ بازده به ۹۹.۷۵٪ نیز می‌رسد. امروزه از ترانسفورماتورها در اندازه‌ها و توان‌های مختلفی استفاده می‌شود از یک ترانسفورماتور بند انگشتی که در یک میکروفن قرار دارد تا ترانسفورماتورهای غول‌پیکر چند گیگا ولت-آمپری. همه این ترانسفورماتورها اصول کار یکسانی دارند اما در طراحی و ساخت متفاوت هستند.






امین اسمعیلی بازدید : 14 یکشنبه 07 مهر 1392 نظرات (0)

به این گوی های رنگی که معمولا از رنگ های قرمز و یا نارنجی استفاده می شود Marker Ball یا warning ball گفته می شود و جنس آن از آلومینیم یا پلاستیک مقاوم است و همچنین قطر آنها در حدود 50 تا 80 سانتی متر می باشد. این گوی های رنگی بیشتر در محل تقاطع خطوط انتقال و فوق توزیع یا جاده ها نصب می شود. از اهداف اصلی استفاده از این گوی ها بر اساس اهمیت آنها می توان به موارد زیر اشاره کرد:

1-به دلیل این که مسیر حرکت بالگردها و گلایدرها معمولا از روی جاده ها می باشد و کابل های خطوط برق فشار قوی به صورت مستقیم روبروی خلبان قرار می گیرد،خلبان گاهی اوقات سیم های فشار قوی را نمی تواند به خوبی ببیند، لذا برای جلوگیری از برخورد با خطوط برق از گوی های رنگی هشدار دهنده استفاد می شود.

2- در بعضی از مواقع که خطوط برق زیادی از یک مسیر عبور میکنند رنگ این گوی ها نشان دهنده سطح ولتاژ خطوط عبوری برای نیرو های عملیاتی و گروه تعمیرات نیز می باشد.
3- در داخل نوعی از این گوی ها فنر فشرده ای نیز می باشد که برای تنظیم خودکار نیروی کشش سیم های برق در تابستان و زمستان (به دلیل تغییرات درجه حرارت و بوجود آمدن انبساط و انقباض در خطوط) به کار می رود. در ایران پیمانکاران کمتر از این مورد استفاده میکنند و این توپ های رنگی را بر روی خطوط گارد قرار میدهند که نشان دهنده این است که هدف اصلی آنها از قرار دادن این گوی ها همان مشخص کردن خطوط برای خلبان ها و جلوگیری از سوانح احتمالی می باشد.

امین اسمعیلی بازدید : 3 یکشنبه 07 مهر 1392 نظرات (0)

فیوز ترانسفورماتور که اغلب کت اوت( CUT OUT FUSE) نامیده می شود یک المنت است و چون با برداشتن تیغه فولادی یا نگهدارنده فیوز مدار مانند قطع یک کلید ، باز می شود به آن کت اوت می گویند . فیوز کت اوت جهت حفاظت ترانسفورماتور در مقابل جریانهای زیاد احتمالی ناشی از اتصال کوتاه یا اضافه بار در شبکه فشار ضعیف و سیم پیچی های داخل ترانسفورماتور به کار می رود .



قسمت های یک کت اوت :

کت اوت شامل دو قسمت است یکی محفظه مسدود که اتصالات خط به آن می بندد و طوری ساخته شده که به کراس آرم بسته می شود و دیگری نگهدارنده فیوز که متحرک است و به آسانی المنت داخل آن قابل تعویض است .

انواع کت اوت :

کت اوت های توزیع معمولا سه نوع هستند : کت اوت مسدود – کت اوت باز – کت اوت با المنت بدون محافظ یا (روباز) . کت اوت هایی که معمولا در برق ایران مصرف می شود از نوع باز هستند .



ساختمان فیوز کت اوت باز :


این کت اوت ها شامل سه قسمت پایه فیوز ، نگهدارنده فیوز (لوله فیوز) ، سیم فیوز (المنت فیوز) است . المنت فیوز داخل یک لوله فیبری که همان لوله فیوز است قرار دارد . وقتی به دلیل اضافه جریان فیوز می سوزد قوس الکتریکی حاصل به دیواره لوله فیبری برخورد کرده و گازی را متصاعد می نماید که قوس را به بیرون می فرستد . هرچه شدت جریان عبوری از فیوز بیشتر باشد گاز بیشتری از مواد دیواره لوله متصاعد می شود . ضمنا بعد از سوختن المنت ، لوله فیوز به بیرون آویزان می شود که این نشانه سوختن المنت فیوز است . المنت (سیم) فیوز کت اوت شامل چهار قسمت تکمه ، ساق ، المنت (سیم ذوب شونده) و سیم انتهایی است . این متن برگرفته از سایت مهندسی برق قدرت و شبکه های انتقال و توزیع مهندس هادی حداد خوزانی می باشد .دکمه ترمینال بالایی و سیم انتهایی ترمینال پایینی المنت را تشکیل می دهد .

اندازه فیوز :

در عمل معمولا ، ترانسفورماتورهای توزیع را در برابر اضافه بارهای جزیی حفاظت نمی کنند ، زیرا باعث سوختن غیر ضروری فیوز و قطع مکرر مدار می شود که هر دوی اینها خوشایند نیست . بنابراین معمول است که فیوزها را با جریان نامی بالاتر از جریان نامی ترانسفورماتور انتخاب کنند . معمولا جریان نامی فیوز را 2 تا 3 برابر جریان نامی ترانسفورماتور در نظر می گیرند . جریان های اتصال کوتاه چندیم بابر جریان عادی است بنابراین آمپر المنت فیوز کت اوت 2 تا 3 بابر جریان نامی ترانسفورماتور در نظر گرفته می شود. 

اطلاعات کاربری
  • فراموشی رمز عبور؟
  • آرشیو
    آمار سایت
  • کل مطالب : 11
  • کل نظرات : 0
  • افراد آنلاین : 1
  • تعداد اعضا : 0
  • آی پی امروز : 15
  • آی پی دیروز : 1
  • بازدید امروز : 2
  • باردید دیروز : 0
  • گوگل امروز : 0
  • گوگل دیروز : 0
  • بازدید هفته : 2
  • بازدید ماه : 3
  • بازدید سال : 9
  • بازدید کلی : 213